Converting a Lead Acid Battery-Powered Lawn Mower to Use Lithium Batteries

About 7 years ago, I was in the market for a new lawn mower. Looking at all the options at the time, I decided to go with an electric 24v, 20 amp-hour lawn mower sold under a brand called Earthwise. Here is the lawn mower in all its glory, model 60120:

Earthwise 60120 electric lawn mower

Credit: Amazon.com

I loved this mower from the get-go. It was extremely quiet, could mow my entire 1/4″ acre lawn in a single charge, and didn’t require gas, oil, spark plugs, etc. The only maintenance to do was charge the battery and sharpen the blade.

That entire first season was great, but it wouldn’t hold a charge for nearly as long the second season. I started having to charge it two times to finish my lawn by the fall. The third season was even worse. It wouldn’t hold a charge for more than a few minutes.

Opening the battery compartment on the lawn mower. 2, 12 volt batteries are wired in series to produce the 24 volts that power the mower.

I knew the batteries needed to be replaced, but I had no idea how much they would cost. I think I paid something like $150 for a replacement set, which is a pretty steep price. A few years later, those batteries were dead too. I gave up on it and bought a cheap used gas mower last year, but I hated using it. The pull starter was finicky, it would occasionally expel clouds of black smoke, and I would forget to buy gas for it from time to time.

I decided to look around and see if other people had found solutions, and sure enough they had. With the proliferation of lithium-ion batteries, it isn’t hard to find the batteries needed or to perform the upgrade.

What I needed to Do

In a nutshell, the task was simple. I had to do the following:

  • Buy lithium batteries to replace the lead-acid batteries
  • Cut the ends off of the black and white wires coming from the top of the battery case.
  • Solder new connectors to the black and white wires (whatever connectors matched the batteries I would buy)

It’s really that simple – just a few tasks and I would be on my way. A little research was required to figure out what batteries to buy, however.

Lithium Polymer (aka Li-Po, LiPo, or Li-Poly) Batteries

Lithium Polymer is a bit of a misnomer, since Lithium Polymer batteries are technically just lithium-ion batteries in a polymer casing (check out this excellent article for a good explanation on the difference between lithium-ion and lithium-polymer: Lithium Polymer vs Lithium-Ion batteries: What’s the deal?), but they came highly recommended as the battery of choice for this project. These batteries are being used all over the hobby world today, with drones leading the way. Lithium Polymer batteries are also used in many computers and cellphones.

Lithium Polymer batteries have a few important pieces of information written on them:

  • Voltage: You need a voltage that closely matches the mower. Since my lawn mower’s voltage is 24 volts, a 22.2v li-po battery is the best fit. Lithium polymer cells have a “nominal” voltage of 3.7v. Lithium polymer battery voltages are just multiples of 3.7v because they run multiple cells together to form a single battery. Therefore a 22.2v battery is really made up of 6 3.7v cells. Nominal voltage means the mid-range voltage because the cells run at 4.2v when fully charged and 3.2v when fully discharged. That means a 22.2v battery will output somewhere between 19.2v and 25.2v during the course of its run
  • Number of cells: Batteries will often have something like “6S” or “3S” printed on them. This corresponds to the number of cells in the battery. 6S = 6 cells = 22.2v. 3S = 3 cells = 11.1v.
  • Capacity/Runtime/Amp hours: Runtime is measured in mAh aka milliamp hours. A battery that has 5000 mAh has a runtime of 5 amp hours. Considering my mower had 20 amp hours, I want my batteries to try and match that if I want the same amount of runtime.
  • “C” Rating/Capacity Rating/Discharge rating: Batteries also list a C rating, which is used to determine the maximum load that a battery can safely sustain. 1C = the capacity of the battery. Therefore if a battery has 5 amp hours/5000mAh, 1C = 5amps. If a battery’s C rating is 40C, then the max is 200amps.

All of this is explained in much greater detail by this excellent article: A Guide to Understanding LiPo Batteries

Based on all this information, I knew I needed 22.2v batteries, and I wanted to get somewhere around 20 amp hours. I read from another resource that 20C was sufficient for others who did this project, so I figured I could do that or above. Looking online, I found the batteries to be fairly expensive. I settled on 2 pairs of these batteries (sold as 2 each): https://www.amazon.com/gp/product/B01AW7CKLW/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1 (22.2v, 4500mAh, 6S, 45C, Deans connector). Note that it says they come with XT-60 connectors, but the picture shows Deans connectors, which is what I received.

Deans Connectors

Deans connectors are apparently very common in the hobby world. I bought a pack of male plugs and a few splitters:

Soldering the ends was a little bit tricky as the connectors from the battery were fairly thick. I eventually got it right though, and the connections work fine.

Other Considerations

Charging the Batteries

You also need a charger for these batteries. Unfortunately, you have to charge them one at a time, so if you want 4 batteries like I have, you either want a multi-battery charger or you have to be a little patient.

Knowing when to Charge

It’s a good idea to get low-voltage indicators: https://www.amazon.com/gp/product/B003Y6E6IE/ref=od_aui_detailpages01?ie=UTF8&psc=1. If you put these on your batteries when you use them, they make a rather annoying sound when the voltage drops to the low threshold. This is important because your mower’s meter isn’t going to tell you when your charge is low. If you push a li-po battery too much, you can cause damage to the battery or it could explode. These things are loud enough that I can hear them while running the lawn mower.

Safely Storing and Transporting

Li-Pos are very flammable and difficult to put out. It is advised to buy a (relatively cheap) fireproof bag for storage and charging and that you charge using the “Storage” setting when you aren’t going to use them for a week or more. You should store them at room temperatures and it is advised you are present while charging due to the fire hazards. The fireproof bag I purchased is here: https://www.amazon.com/gp/product/B01H4QCZ4G/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1

Conclusion

The mower now holds a charge that is easily long enough to mow my entire lawn again. Li-Po batteries are supposed to last for 200-300 charges in good conditions, so I’m hoping to get several years out of this setup. Charging is a bit of a pain, but I tend to mow on the weekends, so I’m usually around long enough to charge all 4 of them (It takes a couple of hours to fully charge each battery).

The mower has enough power to mow at most of the height settings, but it struggles to mow at the lowest levels. This is fairly consistent with how the lead acid batteries performed as well – there just isn’t enough output to chew up thick grass that is significantly lower than the current height.

It turned out that doing this conversion was fairly easy, but not particularly cheap. All told, I bought the following:

  • 2 sets of 2 x 22.2v 4500mAh, 45C batteries – $110 each set ($220 total)
  • 2 battery low-voltage indicators – $5 each ($10 total)
  • Li-Po battery charger/balancer – $55
  • Fireproof bag (holds 4 batteries, came with 2 more low-voltage indicators) – $15

Together, that’s $300, which could buy a decent gas mower. However, I’m a nerd so I enjoyed the project.

Resources:

Configuring a Fraud Detection Whitelist on Office 365 / Exchange 365

I’ve been setup with Office 365 for around a year, and I’m still discovering little things to tweak and optimize. One such thing I ran across today was a little message in some emails that were generated by an on-premises web server:

This sender failed our fraud detection checks and may not be who they appear to be. Learn about spoofing

While the link provided by Microsoft about spoofing describes spoofing in detail, it doesn’t say anything about when you know something isn’t fraudulent and want to prevent it from flagging Exchange. After doing a little digging (I started by looking for some kind of a whitelist or whitelisting certain IP addresses on Exchange/Office 365), I came across a very helpful article: This Sender Failed Our Fraud Detection Checks and May Not Be Who They Appear to Be.

In a nutshell, the problem is that the email headers specify an origination IP address (our web server’s address) that isn’t allowed as part of Exchange’s SPF (Sender Policy Framework) configuration. The SPF configuration will examine an email’s domain and ensure that the domain matches an allowed list, to prevent fraudulent sending. After all, it’s pretty damn easy to spoof an email address using software.

SPF filters are added to your DNS records, and are pretty easy to update. To that end, I logged into my DNS provider and took a look at the records for my domain. There, I found a TXT record that was setup when I initially configured Office 365. This record had the following value:

v=spf1 include:spf.protection.outlook.com -all

In order to add my web server’s address to this record and thus resolve my issue, the line simply needed to be modified as such:

v=spf1 ip4:xxx.xxx.xxx.xxx include:spf.protection.outlook.com -all

xxx.xxx.xxx.xxx is, of course, the IP address you want to “whitelist.”

Once the old DNS record expires (I have a TTL of 1 hour on this record), the new configuration should take effect and your messages will no longer be destined for your Junk Email folder.